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a b s t r a c t

This paper presents an effective heuristic algorithm based on the framework of the filter-and-fan (F&F)
procedure for solving the resource-constrained project scheduling problem (RCPSP). The proposed
solution methodology, called the filter-and-fan approach with adaptive neighborhood switching (FFANS),
operates on four different neighborhood structures and incorporates improved local search, F&F search
with multiple neighborhoods and an adaptive neighborhood switching procedure. The improved local
search, in which a new insert-based move strategy and new time compression measurement of sche-
dules having the same makespan are embedded, is utilized to identify a local optimum and a basic move
list. The F&F search, aimed to further improve the local optimum, applies multi-neighborhood filter and
fan strategies to generate compound moves and a neighborhood-switch list in a tree search fashion.
When the current neighborhood cannot further improve the local optimum, the adaptive neighborhood
switching procedure picks the most potential neighborhood for the next run of the local search proce-
dure. The entire solution procedure is autonomous and adaptive due to its variable search range
depending on the project sizes and characteristics. Computational results and comparisons with some
state-of-the-art algorithms indicate the effectiveness and competence of the proposed FFANS.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The resource-constrained project scheduling problem (RCPSP),
which is known to be strongly NP-hard [1], is one of the most
intractable combinatorial optimization problems in scheduling [2].
Some exact algorithms [3–5] and a variety of heuristic approaches
have emerged to solve the problem in recent decades. However, since
the RCPSP is NP-hard, these exact algorithms cannot find the optimal
solution within a reasonable time if the scale of a project is relatively
large with more than 60 activities or higher resource constraints [6].
Therefore, heuristic procedures remain the only feasible way to solve
large and highly resource-constrained projects. Many researchers have
made substantial efforts in the development of heuristics to tackle this
type of problems in acceptable time. We classify these methodologies
into the following categories: priority rule-based X-pass methods
[7–10], classical metaheuristics [11–19], population-based methods
[20–23], hybrid metaheuristics [24–28], and local search-oriented
methods [29–32]. For more details on other heuristics and their
comparisons, the readers can refer to the surveys [33–36].
ndu@gdut.edu.cn (X. Chen),
Based on the above-mentioned references, we can see that
population-based algorithms as well as hybrid methodologies appear
to be able to produce the best results when applied to the RCPSP. But
these powerful algorithms generally incorporate one or more intricate
guiding strategies, e.g., genetic algorithm (GA), scatter search (SS),
particle swarm optimization (PSO), or ant colony optimization (ACO),
into the iterative process, thereby resulting in more parameter settings
and highly complex parameter adjustments, using, e.g., the trial-and-
error strategy, or Taguchi method of design-of-experiment (DOE) [23].
At the same time, there are not many local search-oriented methods
for the RCPSP, and usually they cannot perform as well as the above
approaches. Besides, almost all of the stopping criteria of the heuristics
are determined by a predefined maximal number of constructed
schedules or time limit. Although it may be a requirement of an
experimental test, a heuristic method is hardly able to autonomously
determine the search level (when to stop) in line with the problem
scale and the current state of the search without the considerations of
predefined criteria.

The filter-and-fan (F&F) approach proposed by Glover [37], which
also belongs to the local search-based methodology, has been suc-
cessfully applied to several NP-hard combinatorial optimization pro-
blems, such as the uncapacitated facility (or warehouse) location
problem (UFLP) [38], job shop scheduling problem (JSSP) [39], and 2D
HP model of the protein folding problem [40]. Hence, we believe that
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the F&F method is a very promising approach to solve the RCPSP.
However, to the best of our knowledge, there is only one research by
Ranjbar [32] that deals with the RCPSP based on the F&F method. In
his paper, the author uses a basic F&F framework, comprising of local
and F&F search, for solving the RCPSP. Also, the search procedure is
terminated using a predefined time limit.

Consequently, we aim to develop a competitive local search-
oriented method that can achieve a high level of overall perfor-
mance being effective, efficient and robust, and completely adaptive
and autonomous. Our proposed algorithm is also based on the fra-
mework of the F&F procedure. However, distinguished from the ori-
ginal F&F for the RCPSP [32], named as the O-FF herein, we develop
new filter and fan strategies by using multiple neighborhoods in the
tree search procedure, and add an adaptive neighborhood switching
procedure to the new algorithm. In this paper, a new filter-and-fan
approach with adaptive neighborhood switching (FFANS) is presented.

The remainder of this paper is organized as follows. In Section 2,
the RCPSP is described briefly. Section 3 introduces some basic
definitions and techniques that will be used in the proposed
method. Section 4 presents the FFANS algorithm. Computational
results, analysis and comparison are provided in Section 5. Finally,
we end this paper with some conclusions and directions for further
research in Section 6.
2. Problem statement

The RCPSP can be stated as follows. A set of activities N, numbered
from 0 to nþ1 where the activities 0 and nþ1 are dummy activities
indicating the start and end of a project, is to be scheduled without
preemption on a set R of renewable resources. An activity p ðpANÞ
has to be processed for dp time units with the occupation of rpk units
of resource k ðkARÞ in each period of its execution. The capacity of
resource k is constant throughout the project horizon and limited to
Rk, therefore, the sum of resource k consumption at any time period t,
RkðtÞ, cannot exceed Rk. Each activity p has a set of immediate pre-
decessors Pp and a set of immediate successors Sp. Let APp be the set
of all predecessors of activity p and ASp be the set of all its successors.
The real activities, indexed form 1 to n, have positive duration and
nonnegative resource use, while the dummy activities are assumed to
not require any resources or processing time. The objective of the
RCPSP is to minimize the project makespan. Fig. 1 illustrates an
example of a project in the form of an activity-on-node (AON) net-
work with 12 activities, including two dummy activities p¼ 0 and 11.
3. Preliminaries

In this section, we briefly describe some definitions and tech-
niques used to build the FFANS.
r

Fig. 1. An AON network as a RCPSP example.
3.1. Forward and backward precedence-feasible activity lists

In this research, the representations of all solutions are in the form
of a precedence-feasible activity list, consisting of forward and back-
ward lists. A forward precedence-feasible activity list can be described
as lFPF ¼ ða0; a1;…; ai;…; aj;…; anþ1Þ where for io j, aiAPaj , and i, j
denote order indexes in the list, ai represents the ith activity. Similarly,
lBPF ¼ ða0; a1;…; ai;…; aj;…; anþ1Þ where for io j, aiASaj .
3.2. Serial and parallel schedule generation schemes with forward or
backward scheduling

Generally, there are two kinds of schedule generation schemes
(SGSs) used for decoding a certain activity list, either the serial SGS
(SSGS) or the parallel SGS (PSGS). The main difference between
these scheduling procedures is that the SSGS is based on activity
increase, scheduling one activity at a time, but the PSGS is based
on time increase, scheduling possibly more than one activity at a
time [41]. Besides, contrary to the SSGS, the PSGS is sometimes
unable to reach an optimal solution; nevertheless, it can often
acquire a better schedule in a relatively short span of time.

Furthermore, by applying the SSGS or the PSGS on lFPF , which is
actually a forward scheduling, the forward SSGS (F-SSGS) or for-
ward PSGS (F-PSGS) can be constructed. Similarly, the backward
SSGS (B-SSGS) and the backward PSGS (B-PSGS) can perform a
backward scheduling by utilizing lBPF . We consider all of these
SGSs for the multi-neighborhood searching in our study.
3.3. Forward and backward schedules

A forward schedule SF is generated after executing some kind of
forward SGS. At the same time, a backward schedule SB is derived
from a backward SGS. The SF and SB are defined as follows:

SF ¼ ððsa0 ; f a0 Þ; ðsa1 ; f a1 Þ;…; ðsai ; f ai Þ;…; ðsaj ; f aj Þ;…; ðsanþ 1 ; f anþ 1
ÞÞ

subject to sai þdai rsaj , where aiAPaj and RkðtÞrRk for all k, t, and
sai and f ai are the start and finish time of activity ai, respectively.
SB ¼ ððf a0 ; sa0 Þ; ðf a1 ; sa1 Þ;…; ðf ai ; sai Þ;…; ðf aj ; saj Þ;…; ðf anþ 1

; sanþ 1 ÞÞ sub-
ject to f ai �dai Z f aj , where aiASaj and RkðtÞrRk for all k, t, and sai
and f ai are the start and finish time of activity ai, respectively.

According to different SGS approaches, SF can be subdivided
into F-SSGS-based schedule and F-PSGS-based schedule, namely,
SF� SSGS and SF�PSGS. Similarly, SB is subdivided into SB�SSGS and
SB�PSGS.
3.4. Forward and backward standard ordering and forward and
backward standard activity lists

For any lFPF , by combing with its SF , which can be generated by the
F-SSGS or the F-PSGS, the employment of forward standard ordering
(FSO) can transform it into a forward standard activity list lFS ¼ ða00;
a01; :::; a

0
i; :::; a

0
j; :::; a

0
nþ1Þ, where for io j, sa0i osa0j , or sa0i ¼ sa0j and a0ioa0j.

In other words, the FSO first sorts lFPF in the ascending order of start
times, and then sorts the activities having same start times using their
numbers. The backward standard ordering (BSO) first sorts lFPF in the
descending order of finish times, and then sorts the activities having
same finish times using their numbers, generating a backward stan-
dard activity list lBS ¼ ða00; a01;…; a0i;…; a0j;…; a0nþ1Þ, where for io j,
f a0i 4 f a0j , or f a0i ¼ f a0j and a0i4a0j.

In a similar way, for lBPF with its derived SB, obtained by either
the B-SSGS or the B-PSGS, lFS and lBS can be built by the FSO and
the BSO, respectively.
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3.5. Serial and parallel schedule generation schemes with standard
forward or backward scheduling

Combining with the above-mentioned standard ordering, four
different SGSs can generate four corresponding standard SGSs,
namely the SF-SSGS, SF-PSGS, SB-SSGS and SB-PSGS. Since they
have almost the same steps, we take the SF-SSGS as an example
for illustration, which is shown in Algorithm 1.

Algorithm 1. Procedure of the SF-SSGS.
Fig. 2. An example of an insert-based move.
1: Input: S
2: Output: lFS
3: lFS’ FSO(S)
4: If schedule S is not generated by F-SSGS then
5: SF’ F-SSGS(lFS)
6: lFS’ FSO(SF )
7: End if
8: Return lFS
3.6. Forward–backward improvement

The forward–backward improvement (FBI) or double justifica-
tion, which was first introduced by Li and Willis [42], and then
explained and extended by Valls et al. [17], is an effective method
to reduce the makespan of a project by iteratively utilizing the
forward and backward SSGS scheduling until no gaps in the
schedule can be compressed further. With the help of the SF-SSGS
and SB-SSGS, the FBI can be easily incorporated into the FFANS to
refine the solution quality. Accordingly, for SF , the FBI first employs
the SB-SSGS and then the SF-SSGS to improve the makespan, and
for SB, the order is reversed.
4. Filter-and-fan approach with adaptive neighborhood
switching for RCPSP

In this section, we propose a new filter-and-fan approach with
adaptive neighborhood switching (FFANS) for solving the RCPSP. We
first depict an insert-based activity move and four different neigh-
borhood structures that are employed in the multi-neighborhood
search. Then we illustrate the fundamental components of the pro-
posed algorithm in detail. Finally, we explain how these components
work together to fulfill the multi-neighborhood search and their
adaptability.

4.1. Activity move

Fleszar and Hindi [29] have developed an enhanced move strategy
by taking account of all predecessors and successors, whether direct
or indirect, of an activity. According to the strategy, with regard to lFPF ,
each activity ai can move to the left (right) position i0 as far as its left
(right) limit, namely, FLLðaiÞr i0rFRLðaiÞ, where FLLðaiÞ ¼ APai

�� �� and
FRLðaiÞ ¼ n� ASai

�� ���1, where i starts from 0. However, in their study,
moving an activity ai from position i to i0 has to progressively
exchange adjacent activities that are located on this path. Even worse,
if an activity whose position is exactly where ai may be moved to has
a precedence relationship with ai, it will be forced to move to its left
(right). Hence, this method may cause a lot of swaps among the
activities. In order to enhance the efficiency and applicability, an
insert-based move strategy has been proposed in this paper, which is
executed by inserting a list of activities without precedence relations
with ai after (before) ai. The main steps of this procedure, the forward
activity list move (FALM), for lFPF are shown in Algorithm 2, and an
example based on Fig. 1 is illustrated in Fig. 2. The activity 7 marked
with * is the one that will be moved to position 5, and its predecessors
and successors, both direct and indirect, are marked with 0.

Algorithm 2. Procedure of the FALM.
1: Input: lFPF , ai, toPos
2: Output: lFPF
3: Calculate the move length of activity ai, MLen’i�toPos
4: If MLen40 then
5: Get a sublist ltemp from lFPF , whose activity indexes are
from 0 to i�1 in lFPF

6: Remove all the predecessors APai of ai from ltemp

7: Produce a sublist l0temp by getting the last MLen activities
from ltemp

8: Remove ltemp' from lFPF
9: Insert l0temp after ai
10: Else
11: Get a sublist ltemp from lFPF , whose activity indexes are
form iþ1 to nþ1 in lFPF

12: Remove all the successors ASai of ai from ltemp

13: Produce a sublist l0temp by getting the first MLenj j activ-
ities from ltemp

14: Remove l0temp from lFPF
15: Insert l0temp before ai
16: End if
17: Return lFPF

On the other side, for lBPF , the backward activity list move
(BALM) can be constructed similarly. It should be pointed out that
the left and right limits of activity ai belonging to lBPF are defined
as BLLðaiÞ ¼ ASai

�� �� and BRLðaiÞ ¼ n� APai

�� ���1, respectively.
Compared to the simple move strategy [35], the insert-based move

strategy proposed here can obtain a greater range of possible moves,
because the range is unacted on the current sequence of activities. An
activity can be moved to any legal position, which is related to the
number of its predecessors or successors, but not the current position
of its immediate predecessor or successor. But using the simple move
strategy, the activity can be moved just to the position after its
immediate predecessor or before its immediate successor as far as
possible. Moreover, compared to the enhanced move strategy [29]
based on activity swaps, the proposed method is more efficient and
universal, in the sense that regardless of whether there is a pre-
decessor or successor in the position to which the activity is moved,
the algorithm is carried out in the same way; but using the enhanced
move method, if there is a predecessor or successor in that position,
the predecessor or successor must be moved to the left or right first
for making room for the moving activity, thus causing a lot of swaps
among the activities. Hence, the insert-based move strategy is able to
generate any feasible list.
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4.2. Neighborhood structures

By integrating the FALM with the F-SSGS and the F-PSGS,
respectively, two neighborhood structures (NS) can be developed.
And by integrating the BALM with the B-SSGS and the B-PSGS,
respectively, we can generate two other neighborhood structures.
The F-SSGS, F-PSGS, B-SSGS and B-PSGS also represent four dif-
ferent neighborhood structures.

4.3. Filter-and-fan procedure with adaptive neighborhood switching

4.3.1. Obtaining an initial schedule
In the proposed algorithm, the roulette selection method is

adopted to generate an initial schedule. During the process of
constructing the schedule, the latest finish time (LFT) priority rule
[43] is applied to generate the probabilities to decide which
activity will be selected from the eligible set formed by the former
activity. At the same time, a certain SGS is used to calculate the
start or finish time of the selected activity.

4.3.2. Improved local search
In the process of local search, especially in its later phase,

plenty of different schedules possessing the same value of the
makespan are generated. Therefore, for the sake of choosing some
more promising schedules among those having the same make-
span, a new indicator time compression (TC) is defined here.

For a forward schedule SF , the TC is calculated by

TC ¼
Xnþ1

i ¼ 0

si ð1Þ

And for a backward schedule SB, the TC is calculated by

TC ¼
Xnþ1

i ¼ 0

horizon� f i ð2Þ

where the horizon is the upper bound of the makespan, which can
be obtained as the sum of the durations of the activities. The use of
the TC measure primarily lies on the following observations. On
the one hand, if some schedules have the same value of the
makespan, then the one with the smallest TC can usually be
relatively easily improved in the later process of moving; on the
other hand, a schedule having a smaller TC might be more easily
compressed by the FBI procedure. The main reason of the above
phenomena is that it is generally easier for the activities that
appear near the end of the standard list with smaller TC to find
available resources.

In this study, we develop an improved local search algorithm
by incorporating the TC measurement of a schedule into the
restricted neighborhood search proposed by Fleszar and Hindi
[29]. At the same time, the improved local search can realize four
different search patterns owing to corresponding neighborhood
structures. The improved local search is shown in the pseudo-code
in Algorithm 3.

Algorithm 3. Local search.
1: Input: S, NS
2: Output: S, M
3: Get the corresponding list l from the schedule S
4: Divide l into I equal parts, l1;…; li;…; lI , such that each part
has α activities and the last part is the remainder

5: For i¼ 1 to I do
6: Create an empty schedule list SL
7: For each ap ðp¼ 0; :::;α�1Þ in the li do
8: If NS¼F-SSGS or NS¼F-PSGS then
9: For k¼ FLLðapÞ to FRLðapÞ do
10: Make a new list lFPF’FALMðl; ap; kÞ
11: Decode lFPF according to the NS, and obtain a new
schedule Snew

12: End for
13: Else
14: For k¼ BLLðapÞ to BRLðapÞ do
15: Make a new list lBPF’BALMðl; ap; kÞ
16: Decode lBPF according to the NS, and obtain a
new schedule Snew

17: End for
18: End if
19: Put Snew into SL
20: End for
21: Get the best schedule Sbest from SL, whose makespan is
the smallest or TC is the smallest if there are more than one
schedule having the same smallest makespan

22: If Sbest is better than S then // the makespan of Sbest is
smaller than that of S

23: S’Sbest
24: Restart the Local Search
25: End if
26: End for
27: Return ðS;MÞ; // M is a basic-move list (see Section 4.3.3)

It is worth noting that the improved local search has its own
characteristics besides those of the restricted neighborhood
search. These characteristics can be summed up as follows:

(1) The procedure is actually the descent search using a candidate
list strategy. All the legal moves concerning α activities form a
candidate list at each stage i. In addition, the indicator TC can
help to choose the most potential candidate (solution) as the
new starting point, if some solutions have the same makespan.

(2) The circular search fashion of the activities and multiple
neighborhoods enable the local search to increase the diver-
sity of the solutions. This is because when the search pro-
gresses, the composition of candidate lists changes; moreover,
different solutions can be produced in different neighbor-
hoods, resulting in different schedules by corresponding SGSs.
In fact, in different neighborhoods, namely, F-SSGS and
F-PSGS, or B-SSGS and B-PSGS, even the same solution can
generate different schedules because of different SGSs.

(3) The procedure is also similar to the Tabu search. When a best
move is found for α activities leading to a reduction in the
makespan, the search restarts from where it reaches. So, it is
usually impossible to move an activity back.

4.3.3. Generating a list of basic moves
During the local search, a list M of basic moves is generated,

which is one of the most important parts of the F&F procedure.
The list M contains η0 moves associated with the best schedules
found by the local search, so that the best legitimate trial moves
used to fan new schedules can be selected from it in the process of
the tree search. In this research, a simple but effective method is
proposed to select moves for constructing the list M. A move is
denoted as a triple m¼ ðj; p; qÞ, meaning that activity j at position p
can move to position q, and each move has two evaluation indexes,
the makespan and the TC, which are obtained from the corre-
sponding schedule. Each activity usually possesses multiple posi-
tions where it can be moved to, especially in some large-scale
RCPSPs having many parallel activities. Therefore, only those most
powerful moves, whose selection criteria are equivalent to those of
Sbest s, will be stored in M. On the other side, in order to fan
diversified solutions at the stage of the tree search, we choose λ
different best moves for each activity. The value of λ is set to satisfy
the Eq. (3), whose detailed explanation is presented in Section
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4.3.4.

λnZ2 � η1η2 ð3Þ
Furthermore, if the number of the potential positions is less

than λ, the best move is replicated so that the number of possible
moves is λ.

4.3.4. Filter-and-fan search with multiple neighborhoods
Given any schedule S associated with the NS, the local search

iteratively improves S using the NS until a local optimum is found,
and finally produces a list M of η0 ¼ λn component moves. The
current local optimum is then used as the root for constructing an
F&F tree with L levels. In this study, for each level, we design a fan
candidate list strategy with multiple neighborhoods to fan a higher
number of trial solutions containing some generated by other
neighborhoods, and a filter candidate list strategy with multiple
neighborhoods to select the solutions generated by the current
neighborhood for the next level and store all the solutions of the
other neighborhoods in the neighborhood-switch list.

The process of the F&F search is actually that of constructing an
F&F tree, which is based on alternate use of the above strategies for
successive levels. First, an enhanced-move is defined here to distin-
guish from the basic move stored in the list M, which is composed of
two different basic moves. Denote the enhanced-move as em¼ ðði;
pi; qiÞ; ðj; pj; qjÞÞ. The reason for using an enhanced-move is that it
contributes to further enlarging of the search scope with almost no
increase in the time consumption. So, even for the first level, an
enhanced-move may generate a new solution better than the root.
And empirical results show that the employment of two basic moves
as an enhanced-move can produce a relatively perfect exploring
range, instead of prematurely ignoring local optimal solutions.

Next, in the first level, based on the current NS, η1 strictly different
enhanced-moves defining the candidate list EMð0Þ are used to create
the nodes of the F&F tree being individually applied to the root. Strict
differences among enhanced-moves imply that there are no identical
basic moves in EMð0Þ. At the same time, according to the other three
NSs, the root generates other three solutions using the corresponding
standard SGSs. If the best solution generated by the current NS is
better than the root, the F&F search stops immediately and goes back
to the local search restarting with this newly improved solution. It
should be noted that the solutions generated by the other NS s are not
engaged in the above selection but are stored in the neighborhood-
switch list. If no improved solution is found, the search continues
constructing the next level. The next level is created as follows. Let η1
be the number of enhanced-moves in EMðkÞ. The method proceeds by
selecting a set of η2 strict enhanced-moves from M associated with
each solution SiðkÞ ði¼ 1;…;η1Þ to generate η¼ η1 � η2 trial solutions
for level kþ1 (as a result of applying η2 enhanced-moves to each
solution of level k) with the current NS. As indicated in [39], setting
η1 ¼ 2 � η2 has been found to yield a good tradeoff between the time
complexity and performance of the search. Likewise, by applying the
standard SGSs corresponding to the other three NSs to each solution
SiðkÞ ði¼ 1;…;η1Þ, 3 � η1 solutions of the other neighborhoods can be
generated and then put into the neighborhood-switch list. If an
improving enhanced-move is found within the trial solutions, the
search stops branching and turns back to the descent local search with
the improved solution. If not, a filter procedure is employed to select
the η1 “best” enhanced-moves from the set of η enhanced-moves
generated for the new EMðkÞ. The term “best” does not necessarily
means that the schedules created by the best enhanced-moves should
have the smallest makespans or TC s, but indicates that the best
schedules need to abide by the diversification criterion. The diversi-
fication criterion can be obtained by making the distance between
each pair of η1 selected schedules not less than a threshold value
th_dist. In this study, we measure the distance between two sche-
dules based on the position of each activity in a standard activity list,
which can be calculated as follows:

distðlS1 ; lS2 Þ ¼
1

nþ2

Xnþ1

i ¼ 0

position of activity i in lSi �position of activity i in lS2 j
��

ð4Þ
where lS1 and lS2 are forward or backward standard activity lists.
Afterwards, the next level kþ1 can be built by applying the EMðkÞ
enhanced-moves to the corresponding solutions SiðkÞ to create
Siðkþ1Þ. At last, if the solution at the root node cannot be improved
after reaching the maximum number of levels L, the F&F search
returns to the neighborhood switching procedure with the last best
solution obtained at the level L. Moreover, whenever the search goes
back to the neighborhood switching procedure, the neighborhood-
switch list is sent back too. The outline of our F&F search algorithm
with multiple neighborhoods (FFSMN) is shown in Algorithm 4.

Algorithm 4. The filter-and-fan search with multiple
neighborhoods.
1: Input: Sroot , NS, M //Sroot is the root node of the search tree
2: Output: ScurrentNS, NSL
3: k’1
4: Create a candidate list EMð0Þ with η1 strict enhanced-
moves from M

// the basic moves comprising the enhanced-moves can be
chosen randomly

5: Apply the EMð0Þ enhanced-moves to Sroot to create the first
level of the F&F tree with solutions SiðkÞ ði¼ 1;…;η1Þ

6: Generate three solutions for Sroot by applying the standard
SGSs corresponding to the other three NSs, and store all of
these solutions in a neighborhood-switch list NSL

7: Find the best solution ScurrentNS from SiðkÞ ði¼ 1; :::; η1Þ
8: If ScurrentNS is better than Sroot then
9: Return (ScurrentNS,NSL);
10: Else
11: Do
12: Identify η2 strict enhanced-moves derived from M for
each solution SiðkÞ ði¼ 1;…;η1Þ, and evaluate each one of
them by computing the value of the corresponding trial
solution

13: Generate three solutions for each solution SiðkÞ ði¼ 1
;…;η1Þ by applying the standard SGSs corresponding to the
other three NSs, and store all of them in NSL

14: Find the best solution ScurrentNS from the η¼ η1 � η2
trial solutions

15: If ScurrentNS is better than Sroot then
16: Return (ScurrentNS,NSL)
17: Else
18: Select the best η1 trial moves, whose corresponding
trial solutions must abide by the diversification criterion, to
become the members of EMðkÞ

19: Apply the EMðkÞ enhanced-moves to the corre-
sponding solutions SiðkÞ to create Siðkþ1Þ

20: End if
21: k’kþ1
22: While krL
23: End if
24: Return (ScurrentNS, NSL)

In brief, to build up an F&F tree, two stages, the fanning stage
and filtering stage, need to be carried out alternately. For the level k
with η1 solutions, the level kþ1 can be constructed as follows:

(1) The fanning stage. According to the current NS, each solution
generates η2 new solutions by using η2 enhanced-moves, each
comprising of two different basic moves, and then these new
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solutions are evaluated by the current SGS. Moreover, each
solution also generates three other neighborhoods’ solutions
by applying the corresponding standard SGSs.

(2) The filtering stage. For the η¼ η1 � η2 solutions generated in
the fanning stage, the best η1 ones are chosen to construct the
level kþ1 according to the diversification criterion.

To illustrate the process of the F&F search consider an instance
j12019_2.sm encompassing 120 activities and 4 renewable
resources, which is a member of the J120 dataset obtained from
the well-known library PSPLIB designed by Kolish and Sprecher
[44]. Because the F&F tree of this instance is very large, we just
display a segment of it, in which some key nodes of the first three
levels and a true trajectory to find the best solution ScurrentNS have
been reserved. So for this reduced example, as shown in Fig. 3, the
parameters can be set as: η1 ¼ 3; η2 ¼ 2; L¼ 3; th_dist ¼ 2.
Nodes in the tree represent solutions with the corresponding
object function values, each of which includes its makespan and
TC. There are two types of arcs in the tree, namely, the other-
neighborhood-fan arc denoting use of the other neighborhood
structures, and the current-neighborhood-fan arc denoting use of
the current neighborhood structure.

The current NS is B-PSGS, and the entry solution is obtained
from the local search using the BALM and the B-PSGS decoding
method. For level 1, the entry solution generates three new solu-
tions in the current NS, namely, solutions A, B and C. Using solu-
tion A as an example, the enhanced-move ((47,77,61),(110,25,4)) is
operated on the entry solution to obtain a new list, then the B-
PSGS is applied to decode the list. Finally solution A is evaluated as
the makespan 87 and TC 5094. Meanwhile, the entry solution also
generates three other neighborhoods’ solutions, namely, solutions
1, 2 and 3. Solution 1 is produced by the SF-SSGS, so the entry
solution of the B-PSGS neighborhood has been changed to the one
of the F-SSGS neighborhood. Solutions 2 and 3 are carried out in a
similar way. Solutions A, B and C are all selected as the members of
level 1, and solutions 1, 2 and 3 are stored in a neighborhood-
switch list. For level 2, the generation of new solutions is the same
as for level 1, but each solution generates two new solutions, so
the filter strategy depicted above is utilized to select the best ones.
The solution E has the same makespan as the solution G, but a
Fig. 3. Example of a filter-and-fan tree with multiple neighbor
smaller TC. So solution E is chosen. The reason for abandoning
solutions F, G and I is that they disobey the criterion of the
diversification. For level 3, the best solution ScurrentNS has been
found, and then the F&F search returns to the local search with
this new starting point. It is worth noting that in the level 2 an
improved solution SotherNS has appeared by using the F-PSGS
neighborhood structure, but the F&F search does not check the
evaluations of this solution and just put it into the neighborhood-
switch list. The search only returns to the local search when an
improved solution generated by the current neighborhood has
been found, for example, ScurrentNS found in the level 3. Hence,
switching from a neighborhood to another one happens only after
the current neighborhood has been explored as much as possible.

4.3.5. The general filter-and-fan procedure with adaptive neighbor-
hood switching

The adaptive neighborhood switching procedure is the most
important part of our proposed F&F method, which can effectively
extend search neighborhoods to further overcome local optimality.
After returning from the F&F search, neighborhood switching is
executed if the current neighborhood cannot improve the local
optimum anymore. The neighborhood switching strategies mainly
comprise: (1) the lock strategy which is used to lock the current
neighborhood, (2) the unlock strategy which is used to unlock all
neighborhoods or just a certain neighborhood, (3) the alternative
neighborhood selection strategy to identify the next legitimate
neighborhood and a new starting solution for another run of the
local search procedure, and (4) the termination criterion. The
general design of our filter-and-fan procedure with adaptive
neighborhood switching is depicted in Algorithm 5. All the four
neighborhoods are unlocked before the process starts. For the sake
of clearness, we define S�local as the local best solution obtained by
the local search, S�tree as the best solution obtained by the F&F
search, S�otherNS as the best solution obtained from the other
neighborhoods, and S�so� f ar as the best solution found so far.
Clearly, S�local is the value passed to Sroot in the FFSMN, and S�tree is
the returned value from the FFSMN, which is equal to ScurrentNS. The
FFANS is described in Algorithm 5.

Algorithm 5. The general filter-and-fan procedure with adaptive
neighborhood switching for the RCPSP.
hoods for j12019_2.sm (η1 ¼ 3; η2 ¼ 2; L¼ 3; th_dist ¼ 2).



Table 1
Parameter settings in the FFANS.

Problem set λ α η1 η2 L th_dist

J30 20 7 24 12 20 2
J60 10
J90 7
J120 5
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1: Input: S, NS
// S is an initial schedule, and NS is an initial neighborhood

structure, which can be any one of the F-SSGS, F-PSGS, B-SSGS
and B-SSGS.

2: S�so� f ar’S
3: Create an empty general neighborhood-switch list GNSL
4: Do
5: ðS�local;MÞ’LocalSearch(S,NS)
6: If S�local is better than S�so� f ar then
7: Unlock all neighborhoods
8: End if
9: ðS�tree;NSLÞ’FFSMN(S�local,NS,M)
10: Put NSL into GNSL
11: If S�tree is better than S�so� f ar then
12: S�so� f ar’S�tree
13: S’S�tree
14: Unlock all neighborhoods
15: Else if S�tree is better than S�local then
16: S’S�tree
17: Else
18: Lock current NS
19: Get S�otherNS from GNSL // regardless of whether the
neighborhood corresponding to S�otherNS has been locked or
not

20: If S�otherNS is better than S�so� f ar then
21: S�so� f ar’S�otherNS
22: S’S�otherNS
23: Unlock all neighborhoods
24: NS’S�otherNS:NS
25: Else if S�otherNS is better than S�local then
26: S’S�otherNS
27: NS’S�otherNS:NS
28: Unlock NS
29: Else
30: Get the first best solution SotherNS from GNSL, whose
neighborhood is not locked

31: S’SotherNS
32: NS’SotherNS:NS
33: End if
34: Clear GNSL
35: End if
36: While there is at least one unlocked neighborhood

The general procedure is dynamic and adaptive because all of its
components, the local search, the F&F search and the neighborhood
switching procedure, are dynamic and adaptive. These traits can be
described as: (1) the basic moves used to make up the list M are
chosen based on the local search; (2) the enhanced-moves selected to
create the next level and the level at which the F&F search can stop
depend on the current state of the F&F search; (3) the components of
the neighborhood-switch list are identified by the current neighbor-
hood search that may include several iterations of the local search and
F&F search, and the selection of the best solution generated by
another neighborhood and its corresponding neighborhood type are
determined by the current state of the general search; (4) locking or
unlocking a particular neighborhood, or even unlocking of all the
neighborhoods, is also done according to the current state of the
general search. In summary, the search is always capable of moving
towards the most promising neighborhood.

5. Computational experiments

The proposed FFANS algorithm was implemented in Java
1.6 and complied using Eclipse v.4.2. All the experiments were
conducted on a PC with AMD Athlon II X4 640 3.0 Gz CPU and 4 GB
RAM running Windows 7 Ultimate. The well-known benchmark
instance sets from the PSPLB (http://www.om-db.wi.tum.de/
psplib/datasm.html) were used to evaluate the algorithm. These
datasets can be divided into four parts, namely, J30, J60, J90, and
J120, with project sizes of 30, 60, 90, and 120 activities, respec-
tively. Each of the first three sets contains 480 problem instances,
and the last set contains 600 problem instances. However for each
instance, there are four different types of renewable resources that
can be used. Furthermore, the levels of three independent problem
parameters, the network complexity (NC), resource factor (RF),
and resource strength (RS), are systematically altered to produce
each set. For J30, J60, and J90, the levels of the parameters are
set as follows: NCAf1:5; 1:8; 2:1g, RFAf0:25; 0:5; 0:75; 1g,
and RSAf0:2; 0:5; 0:7; 1g, and for J120, RSAf0:1; 0:2;
0:3; 0:4; 0:5g.

5.1. Parameter settings

The setting of parameters is very easy in the FFANS, where
appropriate values are obtained by means of empirical fine tuning.
The final settings are listed in Table 1. α is set to an empirical value
available in the literature [29]. The settings of η1, η2 and L have
been found to yield a good tradeoff between the number of
schedules generated (also reflecting time consumption) and per-
formance of the search for large scale projects, such as J90 and
J120. The sets J30 and J60, the smaller projects, also use the same
parameter settings of η1, η2 and L, because we want to verify the
adaptability and autonomy of the algorithm. In fact, the algorithm
itself is able to adapt search strength to the project size and
characteristics (NC, RF , and RS) even under the same parameter
settings. It is important to note that the value of λ does not need to
be adjusted, and is determined by Eq. (3).

5.2. Computational results

The assessment of the FFANS is embodied in the solution
quality, and the solution quality is commonly measured by the
average relative percentage deviation (Dev.) from the critical-path
based lower bound for J60, J90, and J120; and for J30, the lower
bound is based on the optimal solution. Moreover, the indexes of
the average/max number of schedules generated (Av.No.sch./
MaxNo.sch.) and average/max CPU time (Av.CPU/MaxCPU) are
applied to measure the efficiency of the proposed approach.

Table 2 lists the results obtained by the FFANS, where four
different initial NS s have been tested for each set.

5.2.1. Overviews
From Table 2, it can be seen that no matter which NS the

algorithm starts from, it can eventually provide roughly the same
solution quality, with the largest gap between different NSs being
in the case of the B-SSGS and B-PSGS where the difference in Dev.
of J120 reaches 0.07%. But for a more accurate identification, if
the problem scale is small, the SSGSs (forward or backward) are
better choices for the initial NSs, for example, for the J30 and J60
sets. However, for a moderate or larger scale, the PSGSs (forward

http://www.om-db.wi.tum.de/psplib/datasm.html
http://www.om-db.wi.tum.de/psplib/datasm.html
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or backward) show advantages in solution quality and compu-
tational time. The larger the project scale, the better the PSGSs as
the initial NSs; for example, for the J90 and J120 sets. The reasons
can be explained as follows. The search space of the project
whose size is big or RS is low is usually very huge, but the utili-
zation of PSGSs can make the search be confined to a subspace of
it, namely, the set of non-delay schedules; therefore the solutions
generated by the current NS (F-PSGS or B-PSGS) as well as the
other NSs, are better than those generated by SSGSs during the
primary stage of the search, and this advantage increases the
probability of continuing searching. However, for smaller size
projects or the ones with a higher RS, the search space is much
smaller, and PSGSs may eliminate all optimal solutions from the
search space, so SSGSs are better choices. The above results also
confirm the findings of Kolisch [41] and Hartmann and Kolisch
[34]. Furthermore, another thing worth mentioning is that the
use of backward scheduling SGSs (B-SSGS or B-PSGS) has
advantages over forward scheduling SGSs (F-SSGS or F-PSGS) in
the beginning of the search, except the set J90. (The difference in
Dev. produced by the F-PSGS and B-PSGS is 0.01% only, so the
backward scheduling is still competitive.)

5.2.2. Adaptability analysis
From the microscopic perspective, the adaptive property of the

FFANS mainly manifests in locking and unlocking of one or more
Table 2
Overview of the results for the FFANS.

Problem set Indexes Initial NSs

F-SSGS F-PSGS B-SSGS B-PSGS

J30 Dev. (%) 0.00 0.00 0.00 0.00
Av.No.sch. 96,710 99,009 96,722 99,870
MaxNo.sch. 128,422 163,441 146,765 191,865
Av.CPU (s) 2.83 2.88 2.82 2.87
MaxCPU (s) 3.75 4.74 4.45 5.63

J60 Dev. (%) 10.52 10.54 10.51 10.52
Av.No.sch. 134,174 138,014 137,372 138,544
MaxNo.sch. 351,667 355,860 535,356 457,641
Av.CPU (s) 8.05 8.07 8.11 8.04
MaxCPU (s) 22.19 20.54 30.95 26.23

J90 Dev. (%) 9.86 9.85 9.88 9.86
Av.No.sch. 205,718 210,456 206,924 206,362
MaxNo.sch. 729,161 809,800 741,150 715,280
Av.CPU (s) 24.10 24.79 24.93 24.57
MaxCPU (s) 83.98 121.79 83.54 87.91

J120 Dev. (%) 30.77 30.72 30.75 30.70
Av.No.sch. 472,692 454,423 485,802 466,017
MaxNo.sch. 2,019,025 1,575,175 2,209,877 1,522,269
Av.CPU (s) 122.44 110.19 116.30 109.32
MaxCPU (s) 537.20 426.30 549.70 360.60

The bold values mean they are the best results in different initial NSs.

Fig. 4. Effect of RS on the average numb
neighborhoods according to the current state of the search. But on the
macro level, the algorithm is capable to adjust its search degree,
characterized by the number of schedules generated after the search is
done, to the problem scale, RS of the project, and initial NS. We
analyze the adaptability of the algorithm from these three aspects.

(1) Problem scale. The problem scale is the most significant factor
contributing to Av.No.sch. as well as Av.CPU. As the size of the
problem increases, the average number of generated sche-
dules and average CPU time increase monotonically in a
nonlinear way. The result means that in order to keep high
quality of the solutions, the algorithm autonomously changes
the size of the search range in line with the problem scale.

(2) Resource strength. RS is another important factor that is
related to Av.No.sch. and Av.CPU, which can be seen in
Figs. 4 and 5 that are obtained from the set J90 and use the F-
PSGS as the initial NS. As we know, there are 48 different
combinations, each comprising 10 instances, in the set J90,
and these combinations can be further divided into 12 groups
on the basis of the values of RS (RSAf0:2; 0:5; 0:7; 1g). So we
figure out Av.No.sch.-10 (Av.CPU-10) by averaging the number
of the generated schedules (CPU time) of every 10 instances. In
each group, both Av.No.sch.-10 and Av.CPU-10 decrease mono-
tonically with increase in RS. These results also indicate that
the algorithm can adapt to changes in RS to find better
solutions.

(3) Initial neighborhood structure. Based on further investigation,
we know that, although different initial NSs have different
advantages when applied to different sizes of projects, the
average deviations, finally obtained, are almost the same. The
reason is that the procedures that are dominated in the
beginning of the search exert more effort to examine more
schedules for producing consistently high quality solutions.
For example, the value of Av.No.sch. associated with the F-
SSGS or B-SSGS is larger than that of the F-PSGS or F-PSGS in
the set J120; however, the situation is reversed for the set J30.
Hence, the above analysis demonstrates that the proposed
FFANS is an adaptive method.
5.2.3. Robustness analysis
The FFANS possesses remarkable robustness due to its good

adaptability. That is to say, the algorithm is robust because it can
provide high quality solutions over a wide range of problems that
have considerably different characteristics and sizes. For further
testifying this, we use the set J90 as an example to compare our
best solutions (OB) with the so-far-best ones (SFB). Using similar
grouping and calculating methods as those proposed above, we
draw two broken lines, Dev.-10_OB and Dev.-10_SFB, in Fig. 6. As
can be seen in the figure, the line Dev.-10_OB coincides almost
exactly with the line Dev.-10_SFB. The biggest difference between
them is only 2.81% for group 13 (averaging from j9013_1 to
j9013_10).
er of generated schedules (set J90).
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5.3. Comparison with other algorithms

In this subsection, we will compare the FFANS with existing state-
of-the-art algorithms based on the PSPLIB datasets to further
demonstrate its effectiveness. This comparison is composed of two
parts. First, we compare the FFANS with local search methodologies,
because it is also a local search-oriented method. And then, the
comparison proceeds to other metaheuristics, including famous GAs,
population based approaches and hybrids. However, unlike other
metaheuristics, local search-based algorithms generally generate quite
a number of schedules. In addition to the adaptability of the FFANS, it
is possible to restrict the FFANS to generating 1000 or 5000 schedules
only. In the present context, only the local search procedure of the
FFANS may produce more than 5000 schedules. Under any circum-
stances, it is not that increasing the number of schedules that a par-
ticular heuristic is allowed to produce would help to discover better
solutions, since that depends on the neighborhood search strategy
which can effectively extend the search scope. Therefore, in the fol-
lowing comparisons, we usually only list those most powerful
Fig. 5. Effect of RS on the ave

Fig. 6. Comparison of our best solutions with

Table 3
Comparison of local search metaheuristics based on the PSPLIB.

Problem set Algorithm Reference

J30 FFANS This paper
AILS Paraskevopoulos et al. [45]
O-FF Ranjbar [32]
LSSPER Palpant et al. [30]
VNS Fleszar and Hindi [29]

J60 FFANS This paper
O-FF Ranjbar [32]
LSSPER Palpant et al. [30]
AILS Paraskevopoulos et al. [45]
VNS Fleszar and Hindi [29]

J90 FFANS This paper
O-FF Ranjbar [32]

J120 FFANS This paper
O-FF Ranjbar [32]
LSSPER Palpant et al. [30]
AILS Paraskevopoulos et al. [45]
VNS Fleszar and Hindi [29]
algorithms that are used to examine 50,000 or evenmore schedules in
the literature.

Table 3 summarizes the results of the comparison of the FFANS
with other local search approaches. The values in parentheses
denote the number of schedules generated or time consumed. But
for the FFANS, the number of schedules, CPU time and the best
initial NS are all recorded. It is rather clear that there are just few
studies that utilize local search methods in a single solution fra-
mework, and the FFANS outperforms all such local search based
methods. Moreover, compared to the O-FF that is also based on the
framework of the F&F approach, the multi-neighborhood filter and
fan strategies and the adaptive neighborhood switching procedure
make the FFANS more effective. And comparing to the classic local
search based method VNS, we find not only that our FFANS
method is better in solution quality, but that it also produces much
less schedules.

As shown in Table 4, the FFANS can find all the optimal solu-
tions in the set J30. Regarding the set J60, the FFANS is the second
best with 450,000 schedules, and the gap between the FFANS
rage CPU time (set J90).

the so-far-best ones by Dev.-10 (set J90).

Dev. (%)

5000 50,000 450,000

– – 0.00(96,722, B-SSGS, 2.82 s)
0.01 0.00 –

– – 0.00(5 s)
0.00 – –

– – 0.01(0.64 s)

– – 10.51(137,372, B-SSGS, 8.11 s)
– – 10.56(5 s)
10.81 – –

11.10 10.91 –

10.94(152,503)

– – 9.85(210,456, F-PSGS, 24.79 s)
– – 10.11(5 s)

– – 30.70(466,017,B-PSGS, 109.32 s)
– – 31.42(5 s)
32.41 – –

32.67 32.66 –

– – 33.10(1,874,641)
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and the best algorithm is only 0.05%. There are very few existing
test results for the set J90, so, we consider the two current best
results to compare with our algorithm. The FFANS shows good
performance, being in the second place. As for the set J120, the
FFANS is ranked the fifth, and the gap between the FFANS and the
best algorithm is just 0.31%. Moreover, although the number of
schedules generated by our solution procedure is quite large, the
average computational time is acceptable. Hence, the FFANS is an
effective and competitive algorithm for solving the RCPSP.
6. Conclusions and further research

In this paper, we developed a new local search-based method for
solving the well-known resource constrained project scheduling
problem. The proposed method, called the FFANS, relies on the fra-
mework of the filter-and-fan method and is composed of improved
local search, filter-and-fan search with multiple neighborhoods and
an adaptive neighborhood switching procedure. First of all, we
design four different neighborhood structures by simply combining
two SGSs with two directions of scheduling. At the local search stage,
an insert-based move strategy is used to efficiently shift the activities,
and new measurement time compression is proposed to select most
potential ones from the schedules having the same makespan. At the
Table 4
Comparison to other competitive metaheuristics based on the PSPLIB.

Problem set Algorithm Reference

J30 FFANS This paper
SAILS Paraskevopoulos et al. [45]
GA, TS-PR Kochetov and Stolyar [46]
GA-MBX Zaman [15]
SS-PR Mahdi Mobini et al. [47]
ACOSS Chen et al. [27]
GAPS Mendes et al. [14]
SS-FBI Debels et al. [26]
DBGA Debels and Vanhoucke [13]
GA-hybrid FBI Valls et al. [12]
SFLA Fang and Wang [23]

J60 SAILS Paraskevopoulos et al. [45]
FFANS This paper
SS-FBI Debels et al. [26]
GA-MBX Zamani [15]
SS-PR Mahdi Mobini et al. [47]
SFLA Fang and Wang [23]
ACOSS Chen et al. [27]
GAPS Mendes et al. [14]
DBGA Debels and Vanhoucke [13]
GA-hybrid FBI Valls et al. [12]
GA, TS-PR Kochetov and Stolyar [46]

J90 SS-FBI Debels et al. [26]
FFANS This paper
DBGA Debels and Vanhoucke [13]

J120 SAILS Paraskevopoulos et al. [45]
SS-FBI Debels et al. [26]
ACOSS Chen et al. [27]
DBGA Debels and Vanhoucke [13]
FFANS This paper
GA-MBX Zamani [15]
SFLA Fang and Wang [23]
GAPS Mendes et al. [14]
GA-hybrid FBI Valls et al. [12]
SS-PR Mahdi Mobini et al. [47]
GA, TS-PR Kochetov and Stolyar [46]
filter-and-fan search stage, the multi-neighborhood filter and fan
strategies are employed to construct a filter-and-fan tree as well as a
neighborhood-switch list. Further, the enhanced-move is used as a
replacement for the basic move for fanning more effective trial
solutions. As for the neighborhood switching procedure, it can single
out the most promising neighborhood and a new starting solution
for the next run of the local search procedure if the current neigh-
borhood fails to improve the local optimum. The entire solution
procedure is completely autonomous and adaptive, because it is able
to autonomously switch to another neighborhood according to the
current state of the search and decide the search range (strength)
depending on the problem scale and characteristics. Computational
experiments based on the PSPLIB demonstrate that the FFANS can
produce consistently high quality solutions regardless of the project
sizes. And comparison to the existing most powerful algorithms also
shows that the proposed method is effective and competitive. In
summary, the FFANS is able to make a significant contribution to the
field of local search-based algorithms.

The most promising avenue for future research is to design a
more effective move selection mechanism for enhancing the filter
and fan strategies. On the other hand, in the filter-and-fan search
stage, dynamically updating the basic move list according to the
current state of the search may further enhance the diversity of
trial solutions. Furthermore, a big step somersaulting strategy,
Dev. (%)

5000 50,000 450,000

– – 0.00(96,722, B-SSGS, 2.82 s)
0.01 0.00 –

0.04 0,00 –

0.04 0.00 –

0.02 0.01 –

0.06 0.01
0.02 0.01 –

0.11 0.01 0.01(500,000)
0.04 0.02 –

0.06 0.02 –

0.21 0.18 –

10.72 10.54 10.46(70,000)
– – 10.51(137,372, B-SSGS, 8.11 s)
11.10 10.71 10.53(500,000)
10.94 10.65 10.54(150,000)
10.74 10.57 –

10.87 10.66 –

10.98 10.67 –

11.04 10.67 10.67(63,546)
10.95 10.68 –

11.10 10.73 –

11.17 10.74 –

10.59 10.09 9.80(500,000)
– – 9.85(210,456, F-PSGS, 24.79 s)
10.95 10.68 –

32.12 30.78 30.39(200,000)
33.10 31.57 30.48(500,000)
32.48 30.56 –

32.18 30.69 –

– – 30.70(466,017,B-PSGS, 109.32 s)
32.48 31.30 30.75(150,000)
33.20 31.11 –

33.03 31.44 31.20(127,341)
32.54 31.24 –

32.61 31.37 –

33.36 32.06 –
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which is used to find a new starting solution far away from all the
current found best solutions when all neighborhoods have been
locked, is a direction worth pursuing to overcome local optimality.
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